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Abstract. The extensive deployment of tiny computing devices, such as sensors, tablets 
and smart phones, present a requirement for encryption systems fit for low-resource 
equipments. Despite implementation advances, Advanced Encryption Standard (AES) is 
not suitable for extremely constrained environments such as sensor networks and smart 
phones. In this paper, we give a new lightweight block cipher based on quasigroups. A 
quasigroup can be viewed as a series of S-boxes. All the S-boxes of the quasigroup used in 
this new cipher are optimal in linearity and differential uniformity, and all the components 
of these S-boxes have the highest algebraic degree. We compare the performance of this 
new cipher with AES by using the NIST-STS, the randomness of the new cipher is better 
than that of AES. 

1. Introduction 

The extensive deployment of low powered systems, such as sensors, tablets and smart phones, 
will be an IT landscape of this century. This provides a challenging area in the design of 
cryptosystems since tiny computing device’s constraints of low power, low memory and limited 
communication ranges. Most cryptosystems such as AES and RSA were designed for desktop 
environments, the algorithms become a drain on battery life of low powered devices. Further, with 
the increase of cloud services, data being transmitted to and by these devices is growing at an 
exponential rate [1]. 

 A quasigroup (Q, ) is a groupoid where Q is a set and  is a binary operation on Q such that the 
equations 

a  x = b    and    y  a = b 

are uniquely solvable for each pair of elements a, b  Q. |Q| is called the order of the quasigroup (Q, 
). A quasigroup of order v can be viewed as a series of v S-boxes. 

   The theory of quasigroup applications in cryptology goes through a period of rapid enough 
growth now. Quasigroup theory is widely used in the design of hash functions [2, 3], secret sharing 
systems [4], authentication of a message [5, 6], zero knowledge protocols [7], stream ciphers [8, 9], 
and block ciphers [10, 11], etc. 
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 Battey and Parakh designed a quasigroup block cipher with a randomly chosen quasigroup of 
order 256 [10]. A quasigroup of order 256 maybe too big for low memory devices, and a random 
chosen quasigroup may not be optimal in linearity and differential uniformity. In this paper, we will 
present a new lightweight block cipher based on a carefully chosen quasigroup of order 16. The 
new cipher is named Quasigroup Lightweight block cipher (QLW for short). The paper is organized 
as follows: in Section 2 we will define two kinds of string transformations based on quasigroups, e-
transformation and d-transformation. In Section 3 we present the algorithm of QLW. In Section 4 
we analyse the security of QLW, include the linearity, differential uniformity, algebraic degree and 
randomness. Section 5 contains concluding remarks. 

2. String Transformations based on Quasigroups 

Let Q be a finite set and (Q,) be a quasigroup. Let Q+ be the set of all nonempty words (i.e. 
finite strings) formed by the elements of Q. The elements of Q+ will be denoted by x1x2…xv, where 
xi  Q (i = 1,2,…,v) and v is a positive integer. a  Q, we define a mapping Ea,: Q

+  Q+ as 
follows.  x1x2…xv  Q+, 

Ea,( x1x2…xv) =  y1y2…yv 
where 

1 1

1

,

, 2,3, , .i i i

y a x

y y x i v

 
    

  

The mapping Ea, is called an e-transformation of Q+ based on (Q, ) with leader a, and the 
graphical representation of Ea, is shown in Figure 1. 

  x1  x2  …  xv1  xv 
 ↗  ↗  ↗ … ↗  ↗  
a  y1  y2  …  yv1  yv 

Figure 1. Graphical representation of e-transformation Ea, 

We define another mapping Da,: Q
+  Q+ as follows.  x1x2…xv  Q+, 

Da,( x1x2…xv) =  y1y2…yv 
where 

1 1

1

,

, 2,3, , .i i i

y a x

y x x i v

 
    

 

The mapping Da, is called a d-transformation of Q+ based on (Q, ) with leader a, and the graphical 
representation is shown in Figure 2. 

a  x1  x2  …  xv1  xv 
      …     
  y1  y2  …  yv1  yv 

Figure 2. Graphical representation of d-transformation Da, 

Let (Q,) be a quasigroup, define another binary operation “\” on Q as follows: 

x \ y = z          x  z = y. 

It is easy to see that (Q, \) is also a quasigroup and (Q, \) is called the 132-conjugate of (Q,). 
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   Theorem 1[12]  Let Q be a finite set, (Q,) be a quasigroup and (Q, \) be the 132-conjugate of  
(Q,). Then  a  Q and x1x2…xv  Q+, 

Da,\(Ea,( x1x2…xv)) =  x1x2…xv. 

i.e. Da,\ is the inverse bijection of Ea,. 
Table 1 is the multiplication table of a quaisgroup (Q,), where Q is the set of finite fields F16. It 

is easy to check that 

E3, (0123456789ABCDEF) = 62A46697B3A22BC4 
D3,\ (62A46697B3A22BC4) = 0123456789ABCDEF 

Table 1. The multiplication table of a quaisgroup (Q,) of order 16. 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 C 1 5 A F 4 D 3 7 6 9 E B 2 8 0 
1 7 6 9 E B 2 8 0 C 1 5 A F 4 D 3 
2 1 C A 5 4 F 3 D 6 7 E 9 2 B 0 8 
3 6 7 E 9 2 B 0 8 1 C A 5 4 F 3 D 
4 2 B 0 8 6 7 E 9 4 F 3 D 1 C A 5 
5 4 F 3 D 1 C A 5 2 B 0 8 6 7 E 9 
6 B 2 8 0 7 6 9 E F 4 D 3 C 1 5 A 
7 F 4 D 3 C 1 5 A B 2 8 0 7 6 9 E 
8 3 D 4 F A 5 1 C 0 8 2 B E 9 6 7 
9 0 8 2 B E 9 6 7 3 D 4 F A 5 1 C 
A D 3 F 4 5 A C 1 8 0 B 2 9 E 7 6 
B 8 0 B 2 9 E 7 6 D 3 F 4 5 A C 1 
C 9 E 7 6 8 0 B 2 5 A C 1 D 3 F 4 
D 5 A C 1 D 3 F 4 9 E 7 6 8 0 B 2 
E E 9 6 7 0 8 2 B A 5 1 C 3 D 4 F 
F A 5 1 C 3 D 4 F E 9 6 7 0 8 2 B 

3. Description of Quasigroup Lightweight Block Cipher 

Our quasigroup lightweight block cipher (QLW for short) consist of 32 rounds. The block length 
is 64 bits. The key lengths of 80 and 128 bits are supported. The encryption algorithm has three 
parts: 1. generating round keys; 2. e-transformation layer; 3. e-xor layer. The decryption algorithm 
has three parts: 1. generating round keys; 2. d-xor layer; 3. d-transformation layer. 

Let Q = F16, (Q, ) be the quasigroup of order 16 shown in Table 1 and (Q, \) be the 132-
conjugate of (Q, ). Let R = F2 and (R, ) be the quasigroup with the XOR operation  in F2. It is 
easy to check that the 132-conjugate of (R, ) is itself. 

Generating round keys: Let h = 20 or 32 (80 bits key or 128 bits key respectively) and IK = 
(IK1, IK2,…,IKh), where IKi  F16 (1  i  h). Let 

16

1 (mod  16),  1 16,  17 64,

,  17 16.i
i

i i h i
a

IK i h

     
    

 

and 

1 1,1 ,2 ,64 ,\ ,\ ,\ 1 2 64( ( ( ) ))
h hh h h IK IK IKa a a E E E a a a


    . 
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Let ,2 ,1 32i h iK a i    be the 32 round keys (shown in Figure 3). 

e-transformation layer: Divide the source data into 64-bit blocks. Suppose M (0) is a block of 
plain text and divide M (0) into 4-bit integers: (0) (0) (0) (0)

1 2 16|| || ||M M M M  . Let 
( ) ( ) ( ) ( 1) ( 1) ( 1)

1 2 16 , 1 2 16( ),  1 32
i

i i i i i i
KT T T E M M M i  

    . 

IKi a1 a2 a3 a4 a5 a6 a7 a8 a9 … a64 
IK1 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 a1,9 …a1,64 

IK2 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9 …a2,64 

                        
IKh ah,1 ah,2 ah,3 ah,4 ah,5 ah,6 ah,7 ah,8 ah,9 …ah,64 

Figure 3. Graphical representation of generating round keys Ki, i = 1,2,…,32 

e-xor layer: 

1.  ( ) ( ) ( ) ( ) ( )
1 2 3 4|| || || , 1, 2, ,16.i i i i i

j j j j jT t t t t j    

2. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12 13 14 16,1 16,2 16,3 16,4 , 11 12 13 14 16,1 16,2 16,3 16,4( ),  mod 2.

i

i i i i i i i i i i i i i i i i
b im m m m m m m m E t t t t t t t t b i     

3. ( ) ( ) ( ) ( ) ( )
1 2 3 4|| || || , 1, 2, ,16.i i i i i

j j j j jM m m m m j    

The encryption algorithm of QLW is shown in Table 2. 

Table 2. The encryption algorithm of  QLW 

Encryption Algorithm: 
Generating round keys() 
for i = 1 to 32 do 
      e-transformation layer (state, Ki) 

e-xor layer (state, i mod 2) 
end for 

The result of the last round of the encryption, (32) (32) (32) (32)
1 2 16|| || ||M M M M   is the block of 

cipher text. The graphical description of the encryption of round i is shown in Figure 4. 
 

Figure 4. Graphical description of encryption of round i, i = 1,2,…,32 

d-xor layer: Let (0) (0) (0) (0)
1 2 16|| || ||C C C C   be a block of cipher text. 

1. ( ) ( ) ( ) ( ) ( )
1 2 3 4|| || || , 1, 2, ,16.i i i i i

j j j j jC c c c c j    

 ( 1)
1

iM    ( 1)
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16

iT  
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14
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21
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23
it  ( )

24
it  … 

( )
16,1

it  ( )
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it  ( )
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it  ( )
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it  

ib  ( )
11

im  ( )
12

im  ( )
13

im  ( )
14

im  ( )
21
im  ( )

22
im  ( )

23
im  ( )

24
im  … 

( )
16,1

im  ( )
16,2

im  ( )
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im  ( )
16,4
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1

iM  ( )
2

iM  … ( )
16

iM  
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2. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12 13 14 16,1 16,2 16,3 16,4 , 11 12 13 14 16,1 16,2 16,3 16,4( ).

i

i i i i i i i i i i i i i i i i
bt t t t t t t t D c c c c c c c c   

3. ( ) ( ) ( ) ( ) ( )
1 2 3 4|| || || , 1, 2, ,16.i i i i i

j j j j jT t t t t j    

d-transformation layer: 

32

( 1) ( 1) ( 1) ( 1) ( ) ( ) ( )
1 2 16 ,\ 1 2 16( ),  0 31.

i

i i i i i i i
KC C C C D T T T i



         

The encryption algorithm is shown in Table 3. (32) (32) (32) (32)
1 2 16|| || ||C C C C   is the block of 

plain text. The graphical description of the decryption of round i is shown in Figure 5. 

Table 3. The decryption algorithm of  QLW 

Decryption Algorithm: 
Generate round keys() 
for i = 0 to 31 do 
      d-xor layer (state, i mod 2) 

d-transformation layer (state, K32i) 
end for 

 

Figure 5. Graphical description of decryption of round i, i = 1,2,…,32 

4. Security Analysis 

In this section, we analyse the algebraic property of the used quasigroup shown in Table 1 and 
the randomness of the cipher text. 

4.1.  Linearity, Differential Uniformity and Algebraic Degree 

S-boxes are widely used in block ciphers and hash functions. Usually, S-boxes are the only non-
linear part in Feistel network and therefor they have to be carefully chosen to make the cipher to 
resist all kinds of attacks. An nn-bit S-box can be viewed as a mapping on finite fields 2

nF . An 

invertible nn-bit S-box can be viewed as a permutation on 2
nF . 

 Let Q = 2
nF  and (Q, ) be a quasigroup. As we know that each row of the multiplication table is 

a permutation on Q.  i  Q, Define a permutations on Q as follows: 

 ( ) ,   .iS x i x x Q     

Then Si(x) is an nn-bit S-box. For example, the quasigroup shown in Table 1 has 16 44-bit S-
boxes. We denote these S-boxes by Q0, Q1,…,Q15. 
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 u, v  2 ,nF 0 1 1 0 1 1( , , , ), ( , , , ),n nu u u u v v v v    the scalar product of u and v can be defined 

as 
1

0
, .

n

i ii
u v u v




  

Let f  be a Boolean function with n variables ( 2 2: nf F F ).  a  2 ,nF  the Walsh coefficient of f 

at a is defined as 

2

( ) ,[ ] ( 1) .n

f x a xW

x F
f a 


   

The linearity of f  is defined as 

2

Lin( ) max | [ ] |
n

W

a F
f f a


  

For a given S-box of nn-bits S : 2
nF  2

nF  and  b 2 \{0}nF , the component function of S 

corresponding to b is defined as a Boolean function Sb : 2
nF  2F  

2( ) , ( ) ,      .n
bS x b S x x F    

The linearity of S is defined as 

2 2, \{0}
Lin( ) max | [ ] | .

n n

W
b

a F b F
S S a

 
  

The linearity of an S-box gives a measure for the resistance against linear cryptanalysis. The 
smaller the linearity is, the more secure the S-box is against linear attack. The smallest known 
linearity of a 44-bit S-box is 4, see [13]. 

Let 0 1 1 0 1 1 2( , , , ),  ( , , , ) n
n nu u u u v v v v F      and 

2( , ) { : ( ) ( ) } .n
S u v x F S x u S x v       

Define the differential uniformity of S-box S as 

0,
Diff( ) max ( , )S

u v
S u v


  . 

The differential uniformity gives a measure for the resistance of S against differential 
cryptanalysis. Similarly, the smaller the differential uniformity is, the more secure an S-box against 
differential cryptanalysis. It has been shown that Diff(S) is always even and no S-box with Diff(S) = 
2, see [13]. Therefor we have Diff(S)  4. An bijective S-box is said to be optimal if Lin(S) and 
Diff(S) reach the minimum. 

Definition 1[13] Let S be a 44-bit S-box. S is called to be optimal if it fulfills the following 
conditions:  

(1) S is a bijection;  
(2) Lin(S) = 8;  
(3) Diff(S) = 4. 

Another important criterion of an S-box is the algebraic degree. A Boolean function f : 2
nF  2F  

can be uniquely written as a polynomial with n variables, i.e., there exist coefficients 2
n

vc F  such 

that 
0 11

2
0 1 1 0 1 1( , , , ) n

n

v vv
n v nv F

f x x x c x x x 
 

   
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The algebraic degree of f  is the maximal weight of v such that cv  0. Each nn-bit S-box S has 
2n  1 components 2( ) , ( ) , \{0}.n

bS x b S x b F   The algebraic degree of S is defined as the 

maximal degree of its components: 

2 \{0}
deg( ) max deg( ).

n a
a F

S S


  

A good S-box would have high algebraic degree. 
The quasigroup (Q, ) shown in Table 1 is carefully chosen by computer searches. It can be 

check that all the 16 S-boxes of (Q, ) , Q0, Q1,…,Q15, are optimal, and all the 1615 = 240 
components of these S-boxes have the highest degree, degree of 3. 

4.2.  Randomness 

The National Institute of Technology-Statistical Test Suite (NIST-STS) is used to evaluate the 
randomness of QLW with 80 bits key. The NIST-STS package gives a P-value and Success/Fail 
status for various standardized tests. Each P-value is the probability that a perfect random sequence 
generator would have produced a sequence with less random than the one being tested [14]. Each 
test was given a P-value threshold (i.e. a significance level ). If a P-value result from a test exceed 
the value of , the sequence is considered to be random, otherwise, non-random. Typically,  is 
chosen in the range [0.001, 0.01]. 

We compared the performance of QLW with Advanced Encryption Standard-256 (AES256) 
using the NIST-STS. Table 4 shows the average P-values (over 20 runs) for the various tests. The 
second and the fourth columns show the average P-values for all zero (0x0) and all 0xF inputs, 
respectively, in QLW. The third and fifth columns show the tests for AES256. The sixth column is 
the average P-value for all two inputs of QLW and the seventh column is the average P-value for all 
two inputs of AES256. The last column is the ratio of the P-values of QLW and AES256. We can 
notice that the P-values of these tests all cross 0.01, so, we can get a conclusion that the cipher text 
sequence is random. In addition, the proposed new block cipher, QLW, performs better than 
AES256. 

Table 4. Average P-values (over 20 runs) of QLW compared with AES256 

Test All 0x0 
input 
QLW 

All 0x00 
input 
AES 

All 0xF 
input 
QLW 

All 0xFF 
input 
AES 

P-valus 
for 
QLW 

P-valus 
for AES 

QLW/ 
AES 

Block frequency 0.51838 0.59109 0.52442 0.48253 0.52140 0.53681 0.97 
CS-F 0.61461 0.47739 0.60364 0.36766 0.60913 0.42253 1.44 
CS-B 0.48475 0.48052 0.43565 0.36949 0.46020 0.42501 1.08 
FFT 0.27879 0.03377 0.20482 0.05215 0.24181 0.04296 5.63 
Frequency 0.61017 0.38935 0.47760 0.29779 0.54389 0.34357 1.58 
Longest run 0.40096 0.24881 0.50937 0.17118 0.45517 0.21000 2.16 
Runs 0.43017 0.37347 0.42414 0.38143 0.42716 0.37745 1.13 

5. Conclusions 

In this we have presented a light weight block cipher based on a quasigroup of order 8. All the 
corresponding S-boxes are optimal in linearity and differential uniformity, and all the 815 = 120 
components of these S-boxes have the highest degree, degree of 3. By using NIST-STS, we test the 
randomness of the new block cipher with all zero (0x0) and 0xF inputs over 20 runs and compared 
the reslts with that AES256 with all zero (ox00) and 0xFF inputs, the new algorithm performs better 
than AES256.  
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For future work, we intend to give more detailed analysis of the security of the new block cipher 
on algebraic attacks and give detailed performance. 
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